Non-electron transfer chain mitochondrial defects differently regulate HIF-1α degradation and transcription

نویسندگان

  • Antonina N. Shvetsova
  • Daniela Mennerich
  • Juha M. Kerätär
  • J. Kalervo Hiltunen
  • Thomas Kietzmann
چکیده

Mitochondria are the main consumers of molecular O2 in a cell as well as an abundant source of reactive oxygen species (ROS). Both, molecular oxygen and ROS are powerful regulators of the hypoxia-inducible factor-1α-subunit (HIF-α). While a number of mechanisms in the oxygen-dependent HIF-α regulation are quite well known, the view with respect to mitochondria is less clear. Several approaches using pharmacological or genetic tools targeting the mitochondrial electron transport chain (ETC) indicated that ROS, mainly formed at the Rieske cluster of complex III of the ETC, are drivers of HIF-1α activation. However, studies investigating non-ETC located mitochondrial defects and their effects on HIF-1α regulation are scarce, if at all existing. Thus, in the present study we examined three cell lines with non-ETC mitochondrial defects and focused on HIF-1α degradation and transcription, target gene expression, as well as ROS levels. We found that cells lacking the key enzyme 2-enoyl thioester reductase/mitochondrial enoyl-CoA reductase (MECR), and cells lacking manganese superoxide dismutase (MnSOD) showed a reduced induction of HIF-1α under long-term (20h) hypoxia. By contrast, cells lacking the mitochondrial DNA depletion syndrome channel protein Mpv17 displayed enhanced levels of HIF-1α already under normoxic conditions. Further, we show that ROS do not exert a uniform pattern when mediating their effects on HIF-1α, although all mitochondrial defects in the used cell types increased ROS formation. Moreover, all defects caused a different HIF-1α regulation via promoting HIF-1α degradation as well as via changes in HIF-1α transcription. Thereby, MECR- and MnSOD-deficient cells showed a reduction in HIF-1α mRNA levels whereas the Mpv17 lacking cells displayed enhanced HIF-1α mRNA levels under normoxia and hypoxia. Altogether, our study shows for the first time that mitochondrial defects which are not related to the ETC and Krebs cycle contribute differently to HIF-1α regulation by affecting HIF-1α degradation and HIF-1α transcription where ROS play not a major role.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cyclin-dependent kinases regulate lysosomal degradation of hypoxia-inducible factor 1α to promote cell-cycle progression.

Hypoxia-inducible factor 1 (HIF-1) is a transcription factor that mediates adaptive responses to oxygen deprivation. In addition, the HIF-1α subunit has a nontranscriptional role as a negative regulator of DNA replication through effects on minichromosome maintenance helicase loading and activation. However, some cell types continue to replicate under hypoxic conditions. The mechanism by which ...

متن کامل

Tetrathiomolybdate inhibits mitochondrial complex IV and mediates degradation of hypoxia-inducible factor-1α in cancer cells

Hypoxia-inducible factor-1α (HIF-1α) is a transcription factor that triggers adaptive responses upon low oxygen conditions and plays a crucial role in cancer metabolism and therapy resistance. Tetrathiomolybdate (TM), a therapy option for copper overload disorder, has also been shown to be capable of limiting tumor angiogenesis, although its underlying mechanism remains unclear. Using ovarian a...

متن کامل

Non-Canonical Mechanisms Regulating Hypoxia-Inducible Factor 1 Alpha in Cancer

Hypoxia-inducible factor 1 alpha (HIF-1α) orchestrates cellular adaptation to low oxygen and nutrient-deprived environment and drives progression to malignancy in human solid cancers. Its canonical regulation involves prolyl hydroxylases (PHDs), which in normoxia induce degradation, whereas in hypoxia allow stabilization of HIF-1α. However, in certain circumstances, HIF-1α regulation goes beyon...

متن کامل

Phospholipase D1 protein coordinates dynamic assembly of HIF-1α-PHD-VHL to regulate HIF-1α stability

Hypoxia-inducible factor-1α (HIF-1α) is a master transcriptional regulator of cellular response to hypoxia. In normoxia, HIF-1α is degraded through the prolyl hydroxylase (PHD) and von Hippel-Lindau (VHL) ubiquitination pathway. However, it is unknown whether PHD and VHL exert their enzymatic activities on HIF-1α separately or as a multiprotein complex. Here, we show that phospholipase D1 (PLD1...

متن کامل

Oxygen Sensing, Cardiac Ischemia, HIF-1α and Some Emerging Concepts

Oxygen plays a critical role in the perpetuation and propagation of almost all forms of life. The primary site of cellular oxygen consumption is the mitochondrial electron transport chain and in addition, oxygen is also used as a substrate for various enzymes involved in cellular homeostasis. Although our knowledge of the biochemistry and physiology of oxygen transport is century old, recent de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017